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142432 Russia 

Received 11 July 1994 

Abstract. Effects of conduction-band splitting caused by the spm-orbit interaction on the 
magnetoresistance in strict two-dimensional disordered semiconductor systems are considered. 
The Dyakonov-Perel' process (the randomization of spin precession due to elastic scattering) 
is assumed to be the dominant spin-dephasing mechanism. Unlike results published previously, 
which turned out to be wrong. new expressions for the weak-localization corrections to 
the conductivity under an applied magnetic field derived. The field dependence of the 
conductivity is proved to be of variable sign like that of metal film. The explicit forms of 
the correction are, however, markedly different from those known for the impurity spin-orbit 
scamring. Both cases-the perpendicular and p d l e l  magnetic field. where an account of 
Den& splitting is necessar-ax discussed. 

1. -Introduction 

The problem of the current-carrier localization in disordered metals and semiconductors 
containing randomly spread impurities has been extensively studied during the past decade 
[I]. Accordance between theory and a large body of experimental results was most 
impressive in the weakly localized regime (for rFs >> 1, e~ being the Fermi energy and r 
the elastic lifetime), where a perturbational treatment from the metallic limit is applicable. 
In  this^ regime, by moving an electron through a sample, the interference between time- 
reversal paths plays a particular role giving rise to various weak-localization effects. A 
phenomenon studied very frequently is a particular sensitivity of the electrical conductivity 
to variation in a magnetic field on a scale much smaller than that which determines the 
classical magnetoresistance. It has beeen shown both theoretically and experimentally that 
the sensitivity is controlled by such relaxation processes as inelastic scattering as well as 
scattering by paramagnetic and spin-orbit (so) impurities [l]. Thus the observation of the 
magnetoresistance provides a method for determining the electron spin-flip time. 

We will be interested, in this paper, in the case where the spin-orbit (so) interaction is 
the main reason for spin-flip events. At low temperatures, the SO scattering in disordered 
metals is usually due to the electric field of heavy impurities. For the first time, the effect 
of so impurities on the magnetoresistance was considered in [2]. Later on, this theory was 
complemented by taking into account the Zeeman energy 131. Causes for spin relaxation 
in semiconductors are more numerous. Besides the spin-orbit interaction of degenerate 
valence bands in p-type materials and the Elliott mechanism of impurity relaxation [4], 
an important source of the relaxation is the intracrystalline electric field existing in non- 
centrosymmehic crystals of heteropolar semiconductor compounds. Because of the field, the 
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conduction-electron Hamiltonian in bulk crystals includes an so term linear in momentum 
(the p’ term)[5] 

CY 
H ~ : ’ = ~ ~ ( ~ x c ) . o  (1.1) 

H,, (3) - - Y [o ;PAP;  - P:) + w g ( P :  - P:) + S P Z ( P , 2  - P:,] 
in the case of AzB6 compounds with the polar space group q,, or cubic in momentum (the 
p3 term)[6] 

(1.2) 
in the case of A3B5 compounds with the space group q. Here c is the unit vector along 
the polar axis, p is the electron momentum, U is the Pauli spin-matrix vector, and CY and y 
are so constants. Moreover the study of the spin-flip Raman scattering [7] and the optical 
orientation of electron spins [8] have produced strong evidence that the spin relaxation in 
the semiconductors is usually not due to heavy impurities, but is causcd by the underlying 
band structure. 

There are many similarities but there are also important differences between the impurity 
SO relaxation in metals and the relaxation due to the band SO coupling in semiconductors. In 
the former mechanism, the spin-flip event can happen only as a result of a collision with the 
SO impurity, hence the spin of an electron is conserved between the two successive collisions. 
One can choose a direction as the spin quantization axis. Then the spin relaxation of the 
electron is a stochastic process of transitions between two possible states: up and down with 
respect to this direction. It is important that we may allow the spin quantization axes of 
all electrons of a sample to be equally directed. In other words, one can choose a common 
quantization axis. Unlike this, the spin dephasing in the band SO coupling takes place 
through the Dyakonov-Perel’ (DP) mechanism 191: the band SO energy can be considered 
as the Zeeman energy in a fictitious magnetic field B&) = ( u / h g b g ) ( p  x c) which 
stochastically changes its direction by elastic scattering, giving rise to the spin relaxation. 
Between the collisions, for an electron of momentum U, the projection of its spin on the 
Bib)  direction is conserved. The common spin quantization axis is, however, absent- 
any projection of the total spin operator is no longer conserved. There is also another 
feature of the spin kinetics specific for systems whose electron Hamiltonian includes so 
terms linear in momentum. It can be interpreted as the spin precession induced by diffusion 
[lo]. The differences pointed out force us to assume that the two mechanisms should affect 
magnetotransport differently. 

Up to now, little work has been done on incorporating the conduction-band SO coupling 
into the weak-localization theory of strict two-dimensional (ZD) systems. A previous 
approach to the problem presented in [I  I] seems to be oversimplified. By considering 
ZD systems, they suggested a form of the Cooperon propagator like that known for the 
impurity SO scattering. No evidence of the validity of such an assumption has been produced. 
Regrettably, the important consequences of the lack of central symmehy have escaped their 
attention, and the final results turned-out to be wrong. 

The purpose of this paper is to develop the weak-localization theory for purely ZD 
systems where the DP mechanism plays the dominant role. Conduction-band splitting in 
heterostructures (and quantum wells) produced from &VI compounds in such a way that 
the electron-motion plane is perpendicular to the polar vector c is to be described by the 
Hamiltonian H$) .  There are weighty arguments, including the interface electric field and 
the strain induced by the dispersive forces, for the presence of the p’ term also in the 
electron Hamiltonian of III-V heterostructures. The p3 term also can be responsible for 
spin splitting. At low electron density, when only the ground state of a confining potential 
is occupied, the contribution of the term to the effective ZD Hamiltonian can be obtained 
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by obtaining the expectation value of H @ )  for the state. In this way, for an orientation of 
the structure along [OOI], one obtains 

where IE = ( - p x ,  p y .  0) and p = y ( p : ) .  This expression holds only at small filling of the 
ground state, when p z  < (p : )  ( p ~  being the Fermi momentum). At higher filling, terms 
cubic in momentum are also to be taken into account. In most of the present paper we assume 
the p’  term is the main reason for the spin relaxation. So the theory should be applicable, 
in the first place, to AzBs heterostructures. There are also experimental indications that the 
p ’  term may dominate in some narrow-band-gap A3B.5 heterostructures [12]. The opposite 
limit, when the p’ term is negligible in comparison with h e  H::’] Hamiltonian, is briefly 
considered at the end. Corrections to the magnetoconductivity are shown to have the same 
form in both limiting cases. The results obtained differ quantitatively and, in some respects, 
qualitatively from those known for the impurity SO interaction, e.g. impurity SO coupling 
does not result in magnetoconductivity of variable sign in purely 2D systems. whereas the 
band SO interaction does. Thus the conductivity of a purely 20 system with the band so 
coupling turns out to be similar in form to that of a metal film [Z, 31. 

The cases when the Hamiltonians HJ:) and HJ:’) make comparable contributions to the 
spin relaxation and when, in addition to the band SO coupling, the impurity SO scattering 
should be taken into account, will not be touched on. However, the methods developed in 
the present paper will undoubtedly be useful in the general situation. 

It should be noted thaJ.inapplicability of the theory [2] to strict ZD systems was mentioned 
even in the first works [13,14] in which antilocalization in 2~ semiconductor structures 
was observed. An attempt to interpret exp&mental results with the help of this theory, 
made in the recent paper [U],  seems to be incorrect. By fitting the magnetoconductance 
data with a formula for the quantum correction to the conductance derived in [2],  they 
assumed 2H; = Hs0 and H& = 0 (in the notations of [2] and [15]). At the impurity spin- 
relaxation mechanism, this assumption supposes the possibility for the electron momentum 
perpendicular to the system plane to change during the scattering process, which is (under the 
confinement conditions) at variance with quantum mechanics. If one adopts the relaxation 
mechanism due to the band SO coupling, formulas of [2], as will be shown below, cease to be 
applicable. Therefore, the expression for the conductance used in [15] does not apparently 
correspond to any physical system. 

The outline of this paper is as follows. In section 2, a description of the model is given 
and the general spinor structnre of the Cooperon propagator is discussed. The well known 
difficulty of dealing with SO coupling relates to a non-trivial spin dependence acquired by 
scattering amplitudes, vertices and other attributes of the theory. The analogous obstacles 
in the diffuson propagator problem have been recently removed with the help of a novel 
form of tensor products of the Pauli matrices [lo]. In order to take full advantage of a 
technique of [lo], we derive a relationship between the electron Green function and its time- 
reversal counterpart and then, with the help of the relation, make a map from the Cooperon 
problem to the quasidiffuson one. In section 3, a systematic scheme for investigating the 
Bethe-Salpeter (transport) equation for the Cooperon propagator is presented. We find 
eigenfunctions of the kemel of the equation and obtain an explicit form of the Cooperon 
propagator in the absence of an external magnetic field. In section 4, diamagnetic effects 
are studied. By means of the transport equation written in the coordinate space, where 
it looks like an equation describing the diffusion accompanied by the spin precession, an 
expression for the magnetoconductivity in the perpendicular magnetic field is obtained. In 
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section 5, we take into account the Zeeman energy and find the magnetoconductivity when 
the magnetic field B is applied in the plane of the ZD electron gas. Comments on systems 
with the H,63.') Hamiltonians are given in section 6. We give in section 7 a summary of our 
results and conclusions. 

It will be assumed below that the reader is familiar with the many-body quantum-field 
theory (the Matsubara method, the Feynman diagram technique, etc). For a review on these 
topics we refer to the textbook [16]. A familiarity with [IO] is advised as well. 

2. The general formula for the conductivity 

We consider the degenerate two-dimensional Fermi gas of independent electrons of charge 
e, spin 4, and magnetic moment p = i g p B u  scattered by normal impurities and subjected 
to an external magnetic field B. Then the Hamiltonian is written as 

H = Ho ( p  - ' A )  + Hz + H,,, (2.1) 
C 

where 

Hz = - p .  B 

Here A is the vector potential, T is the position of an electron, &. are the positions of the 
arbitrarlly distributed short-range impurities of concentration nimp. In equations (2.1)-(2.3) 
and below we set fi = 1. A standard technique 1161 tells us that the elastic lifetime r is 
given by 

5-1 = mnimpu*. (2.5) 
We shall consider the system under the following conditions. 

(1) The SO energy, cfp~,  is small so that the parameter q = 2cupFr controlling the 
kinetics of spin-flip processes is small 

(< 1. (2.6) 
(2) The magnetic field is also small 

ocz (< 1 wsrs, << 1 (2.7) 

where 

are the cyclotron and paramagnetic resonance frequencies, and 

(2.9) -I - -1 2 r,, - r 9 

is the spin relaxation time [9]. More precisely, equation (2.9) gives the order of magnitude 
of the inverse spin scattering rate. The longitudinal and transverse relaxation times, and 
4, differ from (2.9) by numerical factors of the order of unity. 

Let us first consider the system neglecting the diamagnetic effects. As known [I], 
the weak-localization correction comes from the so-called Cooperon (cfylC(o, q,  B)lpB) 
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Figure 1. Ladder graphs for the Cooperon 

P J  -P.-B 
g - g T =  -~ 
Figure 2. The gnphical representation ofthe arrow-reversal operation. The double m o w  Stands 
for the opposite sim of the magnetic field. 

shown in figure 1, where the solid line represents the impurity-averaged one-particle Green 
function 

GR'*'(C. p ,  B) = f -~Ho(p) + p . E i - (2.10) [ 2 r  I-' 
and the dashed line between two crosses corresponds to the factor (ms)-'. Here the 
superscript R (A) stands for the retarded (advanced) part of the function. For the reasons 
mentioned in the introduction, it is convenient to the reverse direction of one of two electron 
lines forming the Cooperon ladder. This transformation, which has meaning of time reversal, 
can be carried out by means of the~equality 

(2.1 1) 

g . U T .  gT = -cr (2.12) 
where g = iuz, the superscript of T denotes transposition and the summation convention 
for repeated indices is used. In the diagram language, the operation of the arrow reversal is 
exhibited in figure 2. By applying (2.1 I )  to the lower electron propagators of each graph of 
the Cooperon ladder, one can express, as shown in figures 3 and 4, the Cooperon in terms 
of an amplitude, (orylK(o, q. B ) l v p ) ,  

(2.13) 
which is a sum of diffuson-type ladder diagrams. The short-range character of the impurity 
potential enables one, in much the same way as in [lo], to perform the integration over 
intemal momenta of each graph of the quasidiffuson ladder and to present the Bethesalpeter 
(transport) equation in the form of a linear matrix equation 

1 
(VBIK(w, 4'9 B)IQ,S) = -&~&a + (yOIT(w, 5'. B)IKC)(KSIK(O, 9. B)IaS) m r  
where the kernel function T ( w ,  q, B) is given by 

( v ~ W ,  a B) l4  ='z 1 w G F A ( c ~  + w ,  P + q/2, B)G$(EF. P - q/2, -E) .  

(w IClPB) = &. (Q,K IK I@)&?"Q 

(2.14) 

1 d2p 

(2.15) 
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The kernel T ( o ,  q. B )  coincides with that for the diffuson problem of [lo] except for the 
magnetic-field dependence. Owing to the inequalities (2.6) and (2.7) and at small values of 
wave vectors 

ql < 1 (2.16) 

where 1 = uF7 is the mean free path and UF = pF/m is the Fermi velocity, it is sufficient 
to evaluate the kernel to the first order in osz and to the second order in ql 

(2.17) 

The kernels TO(@) and Tl,z(q) were calculated in [IO]. p ( B )  can be calculated in the same 
way. As a result we have 

(YPlTO(W)lOCA) = -6yp6nA + - ( C ’  u ) y p ( C .  0 ) u A  f - (C x T)”,a(C x U):A 2 2 2 

(yPITi(B)ld.) = - - - - 1 ; 2 [ ( h * ~ ) y p & x ~  + 6 y p ( h . u ) u ~ ]  

T(w,  Q. B) = + T i m  + Z(q) + Tz(q). 

W U U 
(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

i g  
2 lgl 

(yBITi(q)laA) = 4ivQeijtG x C ~ ~ ~ p d  

(yPITzfq)laA) = - + Q 2 [ b # S u ~ +  ( C . d ~ p ( c * U ) d .  + (C X c ) k p ( C  X U ) ~ A ]  

where 
U + V  

2 
2 U=- w 1 + iwr U sx 1 +iwr - q 

h = B/B Q = w , r  Q = q l .  (2.23) 

The indices i, j ,  k, n refer to the 3D-VCtOr Cartesian components (with the summation 
convention) and eijk is the 3D antisymmetric tensor. In writing equations (2.19)-(2.21), we 
retained only leading terms in the parameter v. The appearance of the kernel TI (q) linear in 
wave vector is the essential ingredient of the theory. One should emphasize the important 
feature of the expressions (2.18)-(2.24): all of them have a separable form-every term is 
the tensor product of a matrix which depends only on the indices ( y .  P )  entering the kernel 
T from the left (see figure 4) and a matrix which depends only on the right-side indices 
(U, A). This arrangement of the spinor indices appears to be possible owing to identities for 
the tensor products of the Pauli matrices presented in appendix A of [IO]. The free term of 
the matrix equation (2.14), in accordance with (A.l.1) of [IO], 

u):61 (2.24) 
can be transformed to such a form as well. It is clear, therefore, that the solution of equation 
(2.14) has to be of the same form 

&6&@ = g[&,9806 f (c. u)yp(c‘ O)cYS + (c 

3 
(VPIK(W, q, WW) = X L # K i . j d 6  (2.25) 

i , j=O 

where 
xi:) = &x, x p  = (e x U)::*) x:;) = (c . (2.26) 

The graphical representation of (2.25) is given in figure 5. 
Now we turn to the contribution which the Cooperon makes to the conductivity. The 

simplest diagram containing the Cooperon is schematically given in figure 6(a). Note that 
the velocity operator of the system 

(2.27) P 
m v@) = i [ H o b ) ,  TI ==- + ( ~ ( c  x U )  
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T 

P II U 

- 
I 
I 
I +  
I 
I - 

Figure 4. The Bethe-Salpeter equation for the quasidiffuson. 

I I  i 6 

1 Figure 5. The spin< jtructure of tl idiffuson. 
The left and righ triangles correspond to the 

a matrices x. The mows show the order of spinor U= P U F indices. 

as well as the usual scalar part also has a spin component. Now we perform a series of 
simple transformations of the graph 6(a). (i) Let us, in accordance with (2.13), substitute 
the quasidiffuson for the Cooperon and (ii) apply the time-reversal operation (2.11) to two 
Green functions, which join the Cooperon with the upper velocity vertex w(-p) and, using 
the equality 

g * v'(-p). gT = -w@) (2.28) 

to this vertex. It is easy to see that as a result of these manipulations both the g matrices, 
which after perfoming the prescription (i) were on opposite sides of the quasidiffuson (see 
figure 3), go to its right-hand side. (iii) Now one should utilize the representation (2.25) 
and (iv) introduce the time-reversal set of spinor functions 

XLU) = g . XTQ) - g' = [I, -(c x a), - ( c .  a)]. (2.29) 

After all these transformations are performed the graph 6(a) acquires the form shown in 
figure 6(b) in which the quasidiffuson looks like a Base-type excitation carrying out an 
interaction between the electrons. Spinor indices of every entity of the graph are arranged 
clockwise. All other possible one-Cooperon diagrams can he generated from this by making 
the velocity-vertex renormalization due to impurity scattering as well as by inserting a 
singleimpurity line so that it intersects the quasidiffuson line is shown in figure 7. A 
straightforward investigation shows that because of the inequalities (2.6) and (2.7) these 
complications result in negligible corrections to the value of the graph 6(a) and can be 
ignored. Moreover, for the same reasons one can set the field B, the wave vector q, and 
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the so constant a equal to zero in all parts of the diagram except for the quasidiffuson. So 
the quantum correction to the conductivity takes the form 

(2.30) 

where uo = e26Fs/n is the Drude conductivity, qc = ( D Z ) - ' / ~  is the cut-off momentum, 
and D = $r/2 is the diffusion constant. 

la1 

VkP-1 

Figure 6. Tmsformtiom ofthe simplest graph contributing to the weaklocalization wmction. 
(a) The initial form (pk = p -t q/2). (b) The same graph after the substitution of equations 
(2.1 1) and (2.25) (wiggly line is the quasidiffuson). (c) The final form obtained after vansferring 
the left-hand g matrix from xi through ffie upper pm of the graph to xi. Here the double 
arrow on the right hiangle (with the label j )  denotes the time-reversed spinor vector matrix 
x; =gT . x T  .g  = [6.-(c x U ) ,  -(c.u)l. 

J 

V V V 

V V V 

Figure 7. The diagrams contributing to lhe quantum correction to he conductivity to first order 
in ( e ~ r ) - I .  Hatching symbolizes the impurity renormalization. 

3. Spectral representation for the quasidiffuson 

In this section, we assume that the magnetic field is absent. As usual, we replace w in the 
kernel T of the transport equation (2.14) by the inverse of the energy relaxation time os<. 

(3.1) 
7 

b 
-io7 + - = @. 



The solution of the equation (2.14) is obtained by inverting the operator 1 - T .  In order 
to do this, as is well known, one needs to solve the eigenvalue problem for the kernel T, 
i.e. to find a complete set of orthogonal eigenvectors @(j )  such that 

(a@ ITly8)(8y I@(") = €(i)(afiI@("). (3.4) 
Summation over repeated indices is implicit throughout. An eigenvector 0") is a 2 x 2 
matrix normalized 'to 2' 

(Q(i)l@(j)) = (m*(J)la@)(@al@q = Dj, (3.5) 
wiiere the sign * means that if 

3 

(aPl@)=Cc.v$) Yn=~(1.ffx.Uy,ffz) (3.6) 
n=O 

then 

(3.7) 

where c,* is the complex conjugate of c,. There are four eigensolutions of equation (3.4). 
One evidently is 

q g )  = a(q) @(O) = 1. (3.8) 
The other three can be looked for in the form 

Q = F .  (c  x a) + S(C. U ) .  (3.9) 
Substituting (3.9) in (3.4) and employing equations (2.16)-(2.22), one may easily derive a 
set of equations from which the 2D vector F and the scalar S may be determined. We write 
the result in the form 

d(q)F - f(@ x c)S =.€F 
r F .  (6 X C) 4- b(q)S = tS 

where t = iq Q.  Solutions of the system have the form 

(3.10) 
(3.11) 
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where 

and the argument q of the functions a(q), b(q), and d(q) is omitted for short. Now it is 
not difficult to verify the validity of the spectral representation for the free term 

- 1 [8u/$y6 + (c ' U ) @ ( c  ' 4 6  + (c x u)zp(c x U)" ] - - l 3  ~ ( ' @ l * ( i ) ) ( *  *(I) ' 1)' 8) 
2mr Y 8  - 2mr I=o 

(3.16) 

and for the kernel 
3 

(a0 I Tly8)  = ; E&B I+(i))(+*(i) I yS). (3.17) 
i=O 

Owing to (3.16) and (3.17). the solution of equation (2.14) can be written as 

(3.18) 

A more convenient form can be obtained if one utilizes the explicit form of the eigenvectors 
and eigenvalues 

1 
2mr 
+M ' (c x U)@ (c  . u ) y 6  - (c ' U)@M ' (C X U ) y 6 ]  

(CibIKIYS) = - h a b 8 y 6  + B ( C .  U)up(C.  U ) y S  + C ; j ( C  X Uy$(C X U)$t 

(3.19) 

where the following abbreviations have been introduced: 

A = ( I - u ) - l  
1 - d  

B =  
(1 - b)(l - d)  - q2Q2 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

It is iportant to note that the expressions (3.21H3.23) are not re cit 
diffusion poles. An attempt at factoring the denominators, e.g. at Q < r12 

to a sum of simple 

( 1 - b ) ( l - d ) - q Z Q ~ = r Z ~ q 2 - ~ ( 1 + i f i ) ]  1 b q 2 - - ( l - i f i )  1 
2rS0 

results in the appearance of complex 'relaxation times', whose physical meaning is not 
clear. Substituting (3.19&(3.23) in (2.30). we find at rso << r, 

(3.25) 

where 

(3.26) 
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4. Magnetoconductivity in a perpendicular field 

It is known [3] that when an external magnetic field is applied perpendicular to the plane 
of electron motion, the an effects of Zeeman splitting are much smaller than that of 
diamagnetism and can be dropped. In small fields the diamagnetic effects can be taken 
into account within the semiclassical phase-integral approximation for the Green function 
1171 

Gh. r z ,  C, B) = - rz, Oexp  (F l: d(s) ds) (4.1) 

where A(r) is the vector potential and the line integral is performed along a straight line 
between T I  and r2. By utilizing (4.1) and methods of [18],’one can rewrite the transport 
equation (2.14) in the coordinate space 

S(r - r‘) 
(wlK(r, r’)lPS) = 2nt [SuySpa + ( c .  u ) p p  + (c x uXy(c x u,”,s] 

+(ayIT(II)IAK)(KAIK(T. r‘)lPP) (4.2) 
where the kernel T(n), 
( ~ y l T ( n ) l ~ P ) =  1 [ a ( W a y a ,  +b(WCc.u)q (c .u )pp  + d ( n ) ( c x  Q ) : ~ Y ( c  x c)ip] 

1 
+-ql(n x c)ne.j,u&u:B (4.3) 2 

is obtained from the kernel T ( q )  of equation (3.2) by the substitution of the differential 
operator 11, 

v 2e n = - + -A(r) 
I C  

(4.4) 

for the wave vector q. 
In the presence of the magnetic field, it is convenient to deal with the spinor basis {fn), 

I 
A = (fro). &I),  &z), 177)) = (1.  U+. c-, uz) = -(vX *icr,) (4.5) 

45 
instead of the basis (y,,) of (3.6). Let us also introduce creation and annihilation operators 

h A C 

2 2~ eB b = - ( I I x  -in,) b+ = - ( T I x  + in,) A’ = - (4.6) 

obeying the Bose-type commutation relation. Then the kernel T ( I I )  takes the form 
3 

( ~ ~ l ~ ( W P P )  = C(Ti$ + c y ) f i i ) u y f ; ) p g  (4.7) 
i , j=O 

where 
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1 
q* = v+ (4.10) 

the 2 axis is assumed to be directed along c and one should substitute (4/A2)(b+b + $) 
instead of rIz in the functions a ,  b. and d entering the matrix T"). Again, just as in the 
preceding section, the equation (4.2) can be solved once the eigenvalues and eigenfunctions 
of T(n) are found 

(cv IT(W lPD)(DPl+(c)(T)) = €i(olY l@(i)(T)). (4.11) 

The eigenfunctions can be formed from the Landau states @,,a(r) = (rlm, k) for a doubly 
charged particle moving in the uniform magnetic field (where m is the main quantum number 
and k is a quantum number related to the degeneracy of the Landau levels). Let us define 
some symbols by 

1 - a ,  = @ +  (i) (2m+ 1) 

One subset of the eigenvectors is 

@(@(m) = f i o )~m)  qsC)(m) = a, m = 0, 1, . . . . (4.13) 

Here the coordinate dependence of the ket vector Im) is implicit as well as the dependence 
on the degeneracy quantum number. The other subsets of solutions can be looked for in 
the form 

@(')(m) =xi(m)fiIm - 1) +xdm)fzlm+ 1) + x , ( m ) ~ m ) .  (4.14) 

Then (4.14) transforms into the linear-equation system 

d,-lXI (4 + iqsO&X3(m) = dm)X~(m)  
dm+lXz(m) + i s s 0 ~ X 3 ( m )  = &)Xz(m) 
-i(&Xl(m) + -Xz(m)) + b,X3 = ~(m)X3(m). 

(4.15) 
(4.16) 
(4.17) 

Among the solutions of (4.15)-(4.17), there are three particular ones. The first corresponds 
t o m = - l  

@(")(-1) = fiz)lO) ~ ( ~ ~ ) ( - l )  =do (4.18) 

and the other two correspond to m = 0 

(4.19) 

(4.20) 
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where 

At m > 1, when all three components of the eigenvector 
let us introduce more quantities 

( X I .  Xz,  and X,) are non-zero 

C C C 
Hu = - H6 = - Hw = - (4.22) 

A, = m + 5 1 + -~ He (4.23) 
B 

(4.24) I He Hso B , = m + T + - + -  
B B  

(4.25) I HG Hso D, =mi- f - -!- - 
B 2 8  

4eDs 4eD74 4eD5, 

and rewrite the equations (4.15)-(4.17) in the form 

Hij(m)X,!'P'(m) = c(sp)(m)Xj"p'(m) 

(4.26) 

(4.27) 

where 

(4.29) 

For every m > 1, the system (4.27) has three solutions (labelled by index s, s = 1,2,3). The 
explicit form of the solutions is cumbersome as it is determined by roots of the characteristic 
equation, de@ - H ( m ) )  = 0. Fortunately, there is no necessity to have the explicit form 
because the Cooperon contribution to the conductivity is determined only by the eigenvalues 
until the diffusion approximation isvalid [2] and the eigenvalues enter the conductivity, as 
it will be seen, via the trace of the matrix H-'(m). Following [2], one should change the 
integration in (2.30) by the summation on the eigenvalues of the operator T ( I I )  

Then (2.30) acquires the form 

(4.30) 

(4.31) 

where the relation between E;$(m) and the eigenvalues of (4.27) is given by (4.28). In 
accordance with the restriction imposed on the domain of integration in equation (2.30), 
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the upper limit in (4.31), M, is obtained from the inequality q2 < qz, if one makes the 
substitution 

Hence, M = H , / B  - 1. I t  follows from (4.28) and (4.29) that 

(4.32) 

(4.33) 

Thus we get the final result 

1 1 B o + D i  

(4.34) 

The expressions (4.31) and (4.34) suggest the values of the magnetic field are so that the 
quantities Hl , /B  are integer numbers more than two. By treating experimental data, one 
should first calculate h ( B )  at such discrete points and then extend the function between 
the points with the help of a smoothing procedure of some kind. The result of such 
manipulations presented in figure 8 clearly displays the possibility of weak antilocalization. 

D m + l D m - l  + Bm(Dm+i +&-I) - (C$ + C$+I) 

m=l Dm+IDm-IBm - (cpm+l + c:+lDm-l) 

Figure 8. Theoretical results of the magnetoconductivity in a 
perpendicular field BL ( G l  = Z a e ~ r ( o ( B ~ )  - a(O))/q) for the 
choice of H+=0.01(Hu13) for various values of H,, = x(Htr/3) ,  I = 
0.3 (1). 0.5(2). 0.7(3) .  0.9(4). m d  1.2(5). In drawing the function 
G L ( B )  behueen the discrete p o i m  Bo = Hw(n +3)-l. n = 0. 1. 2. . . . 
the linear extrapolation was used for the sake of simplicity. 

5. Magnetoconduclivity in a parallel field 

A parallel magnetic field appears in the problem only through the Zeeman interaction. In 
this case, in order to solve the transport equation (2.14) the eigenfunctions of the kernel T of 
(2.17) are not necessary. One can immediately look for the solution in the form analogous 
to equation (3.19) 
(OrBlgl~S) = ~ ( [ A ~ ~ ~ ~ , ~ + B ( C . ~ ) , ~ ( C . U ) ~ ~  I +Cij(c~u)~~(cxu)~~] 

+ [ M  . (c x U),,&. @ y 8  + ( c .  u)n,8N. (c x u)y8] 
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+[s(c.~),gs,s+us,8(c.~),6] 

+ [L . ( c  x +s,gv. (c x . (5.1) 
The substitution of (5.1) into (2.13) results in a set of equations from which the scalars 
A ,  B ,  S, and U ,  the 2D vectors M ,  N, L ,  and V, and the 2 x 2 matrix Clj may be 
determined. These equations are 

A = 1 + a A  -inL. (c x h) 
B = 1 + b B  + M .  s 

Cij = 6ij  + dCij - q N j  - iQ(cx h);V, 
Mi = dMi - iQU(c x h)i - Bsi 
Nj bNj +s;Cjj 
S = bS+ L . s 
U = a U  - i G M .  (c x h) 
Lt = dLi - iQA(c x h)i - Ssi 
5 =-a& - iQ(c x h)iCjj 

where 

s = t ( B x c )  r = i q Q  (5.3) 
and U ,  b, and d are the functions introduced in equation (3.3). It is seen that (5.2) splits 
into three systems of the same type for the sets of functions ( A ,  S, L), (B,  U ,  M),  and 
(N, V,Ci j ) .  Let us define a symmetric 2 x 2 matrix with elements Di,, 

(5.4) D , j = ( l - b ) ( l - d ) & j + ~ i ~ j + Q ~  (; - I a") ( c  x h)i(c x h)j. 

Then the solution of the system (5.2). which can be obtained by standard linear algebra 
methods, has the form 

1 1 
A = - 1 - a  [I - S2'(") 1 - a ~  ( c x  h)iD,i'(c x h)j 

1 
I - b  

Cjj = ( 1  - b)D;' 

B = - ( l + M . S )  

M .  - -N - -D:'s 
r -  I -  k 

(5.5) 

I - b  
1 --a 

Lj = v ~ =  -in (-) D,;i (C X h ) k  (5.10) 

where 

and we have introduced 
E = (1 - b)( l  - d )  + cos' 4 Q2 

F = -cos$sin4Qz 
G = ( 1  - b)(l - d) + tZ +sin*@@ 

(5.12) 

1 - b  
1 - a  
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and @ is the polar angle of the vector G. Substituting (5.1) in (2.30) and carrying out the 
integration over @, we get 

2 -112 x [Y(Y - 2V2Z)(Y +QZ)(Y - W Z  +2 ] 
where 

z = Q 2 / 2  v = ( l - b ) ( l - d ) .  

From (5.13), it follows that in the low-magnetic-field limit 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

at r, << rs0. The magnetoconductivity in a wider interval, 0 < w,t,, < f ,  obtained by 
means of the numerical integration of (5.13) is presented in figure 9. 

I 
0 0.05 0.10 -1.2 I 

d B ) r  . .  
Figure 9. Theoretical results of the magnetoconductivity in a parallel field BII (Cl1 = 
47IGpl(d(B) - d(o))/do) for the choice Of r/r&.3 for V a l "  VdUeS Of ZIZ6: 

0.01 11). o.o~(z). 0.1 (3). 

6. Comments on systems with the Hgl) Hamiltonian 

In this section, we show that the magnetoconductivity of a system whose so dynamics is 
controlled by the Hamiltonian Hi:') of (1.3) coincides (at equal so constants 01 and B )  
with that of a system governed by the Hamiltonian H$ of (1.1). The proof is based on 
comparing the conductivity graphs of the same type for the two systems. First note that the 
Hamiltonians of the SO and Zeeman interactions, H::') and Hz. transform into 

ir,b')@) = B(p,uy +-P,ux) (6.1) 

Hz = i w , b .  U b = (bx,  by, 6,) = ~ ( h y ,  -hx, h,) (6.2) 
under the rotation in the spin space about the ?. axis by an angle of n/2. This transformation, 
being a canonical one, does not affect the system dynamics. Since px and py are the 
integration variables, one can introduce new variables 

( P Z ?  Py) = (-L, b y ) .  (6.3) 
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This change of variables transforms fiJ:I)(p) into fig1)@) 
fip = p(-bxuy + byox) = p i j .  (2 x U) (6.4) 

which has the same form as ,H$)(p). Now it is not difficult to understand that in the case 
of a parallel magnetic field the transformation (6.3), accompanied by replacing the unit 
vector b with h, makes an one-to-one correspondence between the Feynman graphs of the 
I?gl)@) theory and those~of the H,b" theory. Although the transformation (6.3) changes 
the sign of the x component of the velocity vertex, p lm,  this fact has no effect on the 
diagonal components of the velocity correlation function. So the magnetoconductivities at 
the parallel field coincide. 

In order to see the coincidence at perpendicular fields, the following arguments should 
be added. The part of the kernel T t 3 4  of the transport equation for the H::" system, which 
is linear in wave vector, T,(3.1)(q), after the rotation in the spin space and the change of 
variables (6.3) acquires the form 

( a ~ ~ ~ / 3 % 4 )  = (O~BIF (ma 
I 

= -7l1 [(@+U- +$-U+)+).@. u ) y s  - (2 .  a),,d@+u- + @-u+i)yd]. 
' 

(6.5) 2 
Since 

(6.6) 

it is seen that the matrix of the T,@'"(q) operator in the f basis (4.5) is the transpose of 
the (q) matrix. The same is true for the operator $3.1)(rl) and, consequently, for the 
total kernel T(3.1) .  Therefore. the sum in equation (4.32), determined only by traces of the 
corresponding matrices, must be the same for the two systems. So magnetoconductivity 
measurements in the weak-localization regime cannot distinguish between H$ and H::'). 

1 -  1 -  
@+ = -(qx + i&) = -4- 4- = - (qx - i iy )  = -4+ f i  

I. Summary 

In this work a theory is presented which describes the weak-localization correction to the 
conductivity in purely 2D semiconductor systems with the band so interaction. A transport 
equation for the Cooperon propagator is derived which, because of the lack of central 
symmetry, is no longer reducible to the ordinary diffusion equation. It is established that 
the behaviour of the conductivity resembles that of metal films with impurity SO scattering in 
the sense that, depending on the strength of the so interaction, the localization can transform 
into antilocalization and the magnetic-field dependence can be of variable sign. The explicit 
expression for the quantum correction is. however, different in the two theories. The results 
of the present work suggest that some recent measurements of the magnetoconductivity in 
ZD heterostructures should be re-examined in the light of the theory developed. 
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Note ad&d inprooJ Since this paper was submitted for publication, a short note by lordanskii et al has appwed 
[19], dealing with a similar problem. They studied W systems with the Hamillonian H:;' under the perpendicular 
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magnetic field. Their results are different from OUTS. It is difficult to identify the exact reason for the disagreement 
because there were no derivations in that paper. We, however. do not rule out the possibility that the difference 
can be attributed to a difference between the approaches applied. In the present calculation. Green functions were 
used. which exactly took into account the sointeraction. Instead of this, as far as we cm ascertain, the approach of 
1191 is based on a hypothetical possibility of considering the band SO interaction as the electromagnetic interaction 
with a fictitious spinor vector potential. We do not shave this opinion that such an approach is tenable. Even if 
such a potential could exist. it would fall far ouside the Maxwell theory. There are, for example. good reasons 
for doubting whether the semiclassical phase-integral approximtion (similar to equation (4.1). which is a direct 
consequence of the gauge invariance) would be wmct in the case considered. Therefore, we believe that any 
results obtained within such an approach should be treated with great caution. 

References 

[I] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. SI 287 
[2] Hikami S. Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 
131 Maekawn S and Fukuyam H 1981 J Phys. Soc. Jupan SO 2516 
[4] Elliott R 1 1954 Phys. Rev. 96 266 
[5] Rashba E I 1959 W L  T w d .  EIn 1 407 (Engl. Tmnsl. 1959 SOL,. Phys.-.Sofid State 1 366) 

Gxsella R C 1960 P h y .  Rev. Lea. 5 371 
[6] Dresselhaus G F 1955 P h y .  Rev. 100 580 
[7] Romestain R. Ceshwind Sand Devlin C E 1977 Phys. Rev. Len 39 1583 
[8] See for a review 

Zakharchenya B P. Mirlin D N, Perel’ V I and Reshina I I 1982 Usp. F k  Nauk 1367 459 (Engl. Transl. 
1982 So”. Phys.-Usp. 25 143) 

[9] Dyakonov M I and Perer V I 1971 Fir. Twrd.  Tela 13 3581 (Engl. Tmnsl. 1972 Sov. Phys.Solid Sfale 13 
3023) 

[IO] Edelstein V M 1993 J. Phys.: Condenr. Muller S 2603 
Unfonunately, a misprint appeared in this paper: one should substitute Tu(-) for the sum of ?I + T ( w )  on 

[ I  I] Altshuler B L. Aronov A G, Larkin A I and Khmelnitskii D E 1981 Zh. Ekrp. Teor, Fix. 81 768 (Engl. Tnnsl, 

[I21 Das D. Datta S and Reifenberger 1990 P l y .  Rev. B 41 9278 
Luo I, Munekata H. Fong F F and Stiles P J 1988 Phys. Rev. 38 10 142 

[I31 Poole D A, Pepper M and Hughes A 1982 J. Phys. C: SulidSlote Phys. 15 LI 137 
1141 Kowquchi Y. Takayanagi I and Kawajl S 1987 J. Phys. Soc. Japan 56 1293 
[I51 Dresselhnus P D, Papmassiliou C M A  and Wheeler R G 1992 Phys. Rev. Lett. 68 106 
[I61 Abrikosov A A. Gor’kov L P and Dzyaloshinskii 1 E 1968 Methods ,$Quantum Field Theory in Staristical 

Physics (Englewood Cliffs, NI: Prentice-Hall) 
[I71 Gor’kw L P 1959 2% E!q.  Tew. Fiz 36 1918 (Engl. Tmnsl. 1960 Sov. Php-JETP 10 998) 
[I81 Lee P A and Payne M G 1972 Phys. Rev. B S 923 
[I91 Iordanskii S V, Lyanda-Geller Yu B and Pikus G E 1994 P k .  Zh. EkFp. Teor. Fir. 60 199 

the right-hand side of the formula (3.2). 

I981 Sow Phys.-JE7P 54 411) 


